The Partition-Frequency Enumeration Matrix

Gaurav Bhatnagar (Ashoka University)

18-Feb-2021, 10:30-11:30 (5 years ago)

Abstract: We develop a calculus that gives an elementary approach to enumerate partition-like objects using an infinite upper-triangular number-theoretic matrix. We call this matrix the Partition-Frequency Enumeration (PFE) matrix. This matrix unifies a large number of results connecting number-theoretic functions to partition-type functions. The calculus is extended to arbitrary generating functions, and functions with Weierstrass products. As a by-product, we recover (and extend) some well-known recurrence relations for many number-theoretic functions, including the sum of divisors function, Ramanujan's $\tau$ function, sums of squares and triangular numbers, and for $\zeta(2n)$, where $n$ is a positive integer. These include classical results due to Euler, Ramanujan, and others. As one application, we embed Ramanujan's famous congruences $p(5n+4)\equiv 0$ (mod $5)$ and $\tau(5n+5)\equiv 0$ (mod $5)$.

This is joint work with Hartosh Singh Bal. into an infinite family of such congruences.

classical analysis and ODEscombinatoricsnumber theory

Audience: researchers in the topic


Special Functions and Number Theory seminar

Series comments: To obtain the link to attend the talk, please send a request to sfandnt@gmail.com a few hours in advance of the talk. If you wish to be on our mailing list, please indicate. Please visit www.sfnt.org for information about previous seminars. Thank you!

Organizers: Gaurav Bhatnagar*, Atul Dixit, Krishnan Rajkumar
*contact for this listing

Export talk to